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The author proposes an approximate analytic solution of the problem
of bringing a system described by a hyperbolic transport equation as
rapidly as possible from one given state to another, The resulis of an
experimental verification of the solution are presented,

In many practical situations the distribution of
transport potentials in a solid at the end of a process
is not a matter of indifference. For example, indry-
ing certain materials it is important that the moisture
distribution at the end of the process be sufficiently
uniform. In this case it is desirable for the process
to proceed as rapidly as possible. Mathematically this
problem can be formulated as follows (for simplicity
we will consider the isothermal case, since allowing
for the effect of temperature does not introduce any
important changes). Let there be a system described
by the equation [1]

d%u ou _ ,%u " 2

o +2h01: =da pwry 0L xR, h>0, a®>>0, (1)

with boundary conditions

ou (0, 1) _ Ou(R, 1) _
o 0, a0 (1) (2)

The initial state is characterized by the functions

umm=ﬂm:%%9=nm- (3)

The function £(71) (see (2)) is regarded as the con-
trol function. The possibilities of control are assumed
to be limited in the sense that at any moment of time
the inequality

JE(7)| < M = const @)

must be satisfied.

The problem consists in finding a function £(7)
satisfying the following requirements:

1. At some moment of time 7 = 7, the condition

R
| (e v —ur (]Pdx =0 (5)

o

must be satisfied, where u*(x) is some given £unction
characterizing the final state of the system (u (x) is
assumed to be square integrable onthe interval [0, R]).
2. 1, must be minimal.
If the problem formulated admits an exact solu-
tion at some 1« < «, the approximate solution may
be found as follows.

Using the Fourier finite integral cosine transfor-
mation
R

u,‘(t).=j‘ u(x,'r)cos’fél wd, n=0, 1, .\ (6)

]

we find the corresponding transform of Eq. (1) with
conditions (2)

Lty on a1 @2p2u,— (—1yars o),
it dt
n=0, 1, .., {(7)
where
My = nm/R,

In the Fourier transform initial conditions (3) and
condition (5) take the form

Uy (0) = fl,m dun (0) = fz,m (8)
dz
Up(te) =u,, n=0,1, .. 9)

(f1,ns f2,ns uf, were obtained by applying transforma-
tion (8) to the functions fi(x), f2(X), W*(x)).

The initial problem reduces to the following: for
system (7) with conditions (4), (8), to find a function
£(7) that will ensure the satisfaction of Egs. (9) at
minimal 7,

We will solve the analogous problem for a finite
system of m + 1 equations (7), i.e., forn=0,1,...,m.
We denote the corresponding optimal time for this
system by 7* , and the optimal control by g*;n. The
problem of the existence and uniqueness of the solu-
tion of such a problem for finite systems of ordinary
linear differential equations (in particular, of type (7))
was examined in [2].

We leave open the question of the limit lim <),

s 0
assuming that there exists a 1, < o, £g. It is quite ob-
vious that T;"n =Ty, m=0,1,....In fact, if we assume
that at some m = k the inequality 7} > T4 holds, then
the control §§ will not be optimal for the correspond-
ing finite problem, since there is a control &4 that
ensures satisfaction of Egs. (9) at T4 < 7}. From
analogous reasoning there follows the validity of the
inequalities Ty < T~y at m =0, 1, ..., The gen-
eral form of the control function ¢}, can be found
using the maximum principle [2]. In accordance with
the method and notation of [2] we form the auxiliary
function H.
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For this purpose we first introduce the newvari-
able v, (1) = du,,/d;. This makes it possible to write
system (7) in the form

dUn 2 2
d— = thn —a P‘?, Up -+ (_1)n a g(T),
T

dﬂ-—_—vn(r), n=0 1, ...,.m. (10)
dt .

In accordance with [2], the function H has the form

m

H= ¥ (2, —a*p2u, +

n=0
+(*—1)na2§(‘r)]¢l,n+vn,'¢72,n}, (11)

where ¢, ., Ll)z’ n are auxiliary functions satisfying
the system of equations

A, A .
Jfb_z%qpl’n_%m 2 Pe,n

dr dt
n=01, ..., m (12)

2
=4a I’I’IQI V1, ns

The unknown function g;n satisfying the conditions
of the problem (at n =0,1,..., m) is found from the
condition max H and consequently has the form

g
E = Msign 2 (—1)"dy, (7). (13)
n=0

Since in this case we have imposed no conditions on
the values of vn(‘r;‘n), at 7= T;“n, the transversality
conditions

Yiu(t,)=0,n=01,..,m

must be satisfied. Solving systems of equations (12) for
example by means of a Laplace transformation for
¥1,n With allowance for the transversality conditions,
we obtain

Pra (T) =

WO [—h =T
=¢Le)(<P)(ejph[r*)si(r:k rf)J sink, (v, — 1), (14)

where

by = (@Ppa—hH'5 AT —a*ul <o,

sini, 7,0, n=0,1, .., m (15)

When h* — azu% >0, expression (14) is also valid.
Using Euler's formulas we can pass from the com-
plex expression (14) to a real expression containing
only exponential functions. Here and in what follows
it is assumed that the case h? — 421 = 0 does notoc-
cur. n

We will consider the following expression which

gives the mean square error for control (13):

R
82 = 5 [ (x, &y ©)— u* (x)]*dx. (16)

m
0

233

We will show that

lim 82 =0, (17)

M
i.e., that the initial problem can be solved with any
degree of accuracy (inthe sense of (16)) by choosing

a sufficiently large m in the corresponding truncated
problem.
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Fig. 1. Distribution of moisture content u, kg/kg,
along the length of the specimen x, mm: a) at
the beginning of the equalization process; b)
at the end of the process; the horizontal straight
line represents the calculated relation u(x,0);

the curve represents u(x, T;';l).

The general solution of system (7) can be obtained
using a Laplace transformation. It has the form

1
Uy (1) = —— X
021,rL —Ug,p

x {[((11',,-{'-2}1) fl,n + f?,n] (249 Ug,nt —

- [(a’%n +2h) fl,n _l" fz,n] exXpa, , T +

4 (—1)mat \ E(e) [exp ayq (T —g)—

4]

~expa, , (v —¢)| de}, (18)

where @jn = -h + (—1)3""1(h2 - azu%)i/z, i=1 2, h® -
—azu%> 0 for n=0,1, ..., k. For those n>k at
which h? - azu%l < 0, the solution can be written in
the form

Uy (T) = fl.n cos 7&""7 exp(—— hT) +

+ (fon + Bf1.0) sinhqtexp(—hT) +

1
Ay

—i—(“—;)n—fl—g j E{e)sinh, (t —e) X

X exp [—h(t—e¢)| de,
=k, B+2 .., (19)

where the A, have the form (15).

Using the formula for the inverse Fourier trans-
formation and Eq. (9) withn =0,1,..., m, wecanex-
pand expression (16) to
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Fig. 2. Calculated relation £§,(7) (T in hours,
£%, in kg/kg - m),

When m = k, the last sum can be divided into two
parts:

k
=g B [ =+
n=m+1
+ 2N [nlE D — il (21)
R n=k41

where in the first sum the uy(£,, 7%, ) correspondto
solution (18) and in the second to (19).

As m increases, starting withm = k + 1, when
the discriminant h® — g?uf =k + 1, k + 2,...) be-
comes negative, expression (20) will include un(.g";n,
Tm) of type (19) only.

We now obtain the following estimates:

fincos A Texp(— A1)+

+ ;—}« (fon + hf1y) sind,texp(—AaT) <

n

< Vun 1+ ,/\il Fan + Bl < [fud +

1

+ ]f2n + hflnl = B,

'm+1

n=m+1, m+2, .., (22)
where m >k, and By is the abbreviated notation.
Using (19), (22), and 4), we obtain

lu, (v)} < By +

‘f S.‘é(s)sinx,,(r——s)exp [—h(t—-a)]de] <
"

+|
<B,+ i:—Q m.?xIE{ X

xj exp[—h(v —e)|de | < B, +
[
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M

Ao ht

s n=m4+l, m+2 ., m>k  (23)

Using (23) we find an estimate for expression (20)
(m >k):
2 0
62 < —
™ "R

n=m-1

2 2
[Bn+ Ziw,, + M\] <

2 “ e
<_R— Z (Bt lu, [ +

S
+—;§§H<Bn ) S+
+2 % (o f<z Y (8,41 +
n=m-1 n=m-1
+= [gl (Bot 1 l)z]__; L; ( fl’:f )2]% +
+ %n;;.l(ﬁj )2, (24)

where the last inequality sign results from using the
Cauchy inequality.

Since the functions fy(x), f3(x), u*(x) are assumed
to be square integrable on the interval [0, R],

2 .
I}llfr;lo E Z (Bn + lu" |)2 =0.
n=m+1
On the other hand, using expression (15) for Ap, we
obtain

< - 1
n§:xT§:n§+1a‘zpi—h2 -
_ 2 U B U
Bt -
<X Foem e
n=m-1 " n
_ 2‘" paRY
=@ — k)

R us, S
T D Ny

n=m-+1{

m

S ST
=
af@tpl—~h) 6 = on

since
iLzﬁ
=l n? 6
Consequently,
’}Lig v —)1:2— =0.
n=m+1 P

Thus, all the terms of (24) tend to zeroas m — =,
and the validity of Eq. (17) has been proved. It follows
that expression (13) gives the approximate solution of
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the initial problem. In order to find the constants

Yi,n (0) and 1%, (see (14)) that enter into the structure
of the control function &, (13), various methods have
been developed. Not having the space to describe these
methods in detail we refer the reader to [3]. The ex-
perimental portion of our study was concerned with the
process of convective drying. The specimen was a clay
cylinder 30 mm long and 30 mm in diameter, the cy-
lindrical surface and one of the end faces being insu-
lated. The temperature of the medium in the drying
chamber was tmed = 25 + 0.2°C, The air velocity inthe
zone where the specimen was located was 5 m/sec. The
medium was moistened by atomizing distilled water
with compressed air and feeding the mixture obtained
into the intake zone of the drying chamber circulating
fan.

The changes in moisture content were registered
with six micropickups arranged at intervals of 5 mm
along the length of the specimen. A detailed descrip-
tion of these pickups is given in {4]. The measuring
error did not exceed 0.5 - 10~% kg/kg.

The initial moisture content distribution function
used in the calculations is represented by the curvein
Fig. 1. The final moisture distribution was required
to be uniform: u*(x) = 0,1675 = const (straight line in
Fig. 1). First we found the approximate values of the
transport coefficients: ¢?= 6.72 -107%, h = 0.45, and
then computed the approximate optimal control func-
tion (13) at M = 15.6, m = 2. Its form is shown in

Fig. 2. O (2.0
The values of u((;; )

approximate formula

were calculated from the

Oulx, 1) _ulX, t) —ulX, Te)
ot Ty — Tp—1

The integrals (6) for the functions fi(x), fa(x) were
evaluated from the trapezoidal rule. Since it is diffi-
cult to check the variation of £(7)(see (2)), we used
the calculated £%,(7) to find u(x4,T) at the point x =
=Xy = 27.10"% m, i.e., at a distance of 3 mm from
the exposed end face of the specimen, In finding u(xXx,
7) we used only the first three terms of the Fourier
series, the solution u(x, 7) of Eq. (1).The correspond-
ing theoretical function u(xx, 7), converted to instru-
ment readings, is shown in Fig. 3.

The process was controlled so that the actual (in-
strument readings) u(xy, 7) varied in accordance with
the curve in Fig. 3. Several such test processes were
carried out. The results of one of them are represented
in the figures by circles. The solid circles indicate the
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final moisture content distribution obtained (at T = 2
hours 42 min). The equalizing effect is obvious. This
indicates the practical applicability of the approxi-
mate analytic solution of the control problem with
Eq. (1).
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Fig. 3. Calculated (curve) and experimen-

tal (points) relation r(r) for pickup read-

ings at the point x =27 mm (r in kilohms,
T in hours).

NOTATION

u is the specific moisture content, kg/kg; x is the
space coordinate, m; 7 is the time, hours; h [l/hr],
at [mz/hrz] are the transport coefficients; £ is the con-
trol action, kg/kg - m; ¢, H are the auxiliary functions
in the theory of the maximum principle; p, = nr/R;

Ap = @R - W2)¥2, m + 1 is the number of equa-
tions (7) used in the approximate solution of the prob-
lem. Asterisks denote optimal values.
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